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A B S T R A C T

We propose a new as-rigid-as-possible approach to the real-time simulation of physics-
based deformable models for interactive applications such as computer games. The
key observation is that the efficacy of an embedded oriented particle representation
and the stability of a variational implicit formulation of the projective dynamics are
complementary to each other. We reformulate the variational implicit formulation to
deal with an embedded graph of oriented particles. Our new formulation is extremely
stable, and our alternating local/global optimization solver is both easy to implement
and computationally efficient. Our method can deal with one-dimensional (cable and
rod), two-dimensional (shell), and three-dimensional (solid) models in a uniform man-
ner. Experimental results demonstrate that hundreds of deformable models with an
extremely large number of polygons can be simulated robustly in real time using thou-
sands of particles.

c© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Physics-based simulation is becoming one of the most im-
portant techniques for interactive applications such as games.
In this paper, we consider physics-based deformation, which
has been studied extensively in computer graphics. However, it
is still challenging to robustly produce visually convincing and
stable deformation in real time. In real-time applications, the
robustness and computational efficiency of deformation simu-
lations are often more important than their accuracy.

Recently, several simulation techniques have been developed
to compute positions directly instead of integrating velocities or
accelerations to achieve better stability and efficiency. Position-
based dynamics (PBD) [1] deals directly with mesh vertices,
while meshless deformation [2] utilizes shape matching to com-
pute the optimal rotation and translation for mesh vertices.
These position-based methods are stable regardless of the time
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step size, and thus the deformation can be simulated very effi-
ciently with large time steps.

Two remarkable approaches aim to further improve the PBD
method. The first approach employs a simplified structure with
a small number of oriented particles to simulate the complex
geometry of meshes in a more efficient and robust manner [3].
The second approach called projective dynamics [4] reformu-
lates the implicit time integration of deformation dynamics as
energy minimization in a variational form. In PBD, the mate-
rial stiffness of a deformable solid is tightly coupled with the
convergence of the solver. The formulation of variational im-
plicit integration is similar to PBD, but the projective dynamics
method is advantageous because the material stiffness can be
specified independently of the solution methods.

We found that these two approaches are complementary to
each other and they can be combined to take advantage of their
benefits. The key challenge is to reformulate the deformation
energy and momentum potential energy to deal with an embed-
ded graph of oriented particles. Our new formulation yields
a compact formula via clever manipulation of the integral en-
ergies and it is extremely stable. Furthermore, our alternat-
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ing local/global optimization solver is easy to implement and
very efficient for simulating complex deformable models in real
time. The deformable models can be manipulated interactively
and the collision between deformable models can be handled
efficiently. Our method can deal with one-dimensional (ca-
ble and rod), two-dimensional (shell), and three-dimensional
(solid) models in a uniform manner.

2. Related work

Physics-based simulations of deformable bodies have been
researched for decades in computer graphics since the pioneer-
ing work by Terzopoulos et al. [5] and many methods have been
developed to produce accurate simulations of various types of
deformable objects [6]. However, in real-time applications, the
robustness and computational efficiency of deformation simu-
lations are often more important than their accuracy, and these
requirements are still demanding.

Recently, a number of methods have been proposed for ro-
bust real-time simulations by evolving the positions of the par-
ticles using the initial and predicted positions, before updating
the velocities based on the positions. Meshless deformation
based on shape matching computes the optimal rotation and
translation from the initial positions to the predicted positions to
deform the mesh vertices [2]. This method is robust regardless
of the time step size, and thus it is suitable for real-time applica-
tions. However, shape matching with a single transformation is
restricted to modest deformation. The extension of this method
to a lattice applies shape matching to each set of overlapping
lattice points with a fast summation method to generate large
deformation [7]. The fast summation approach has been applied
to the simulation of hair with chain shape matching [8], as well
as being generalized to an irregular structure on a surface mesh
with volume preservation [9], and extended to multi-resolution
approaches to enhance the convergence [10, 11]. Shape match-
ing with oriented particles is an efficient and robust method for
simulating the complex dynamic deformation of one-, two-, and
three-dimensional deformable bodies even with a small number
of particles in a single framework [3]. A deformable body is
approximated by ellipsoidal particles and shape matching is ap-
plied iteratively to each shape matching group comprising a par-
ticle and its one-ring neighbors. Our method employs this ori-
ented particle representation so hundreds of deformable models
with an extremely large number of polygons can be approxi-
mated using thousands of particles and simulated robustly in
real time, as illustrated in Fig. 7.

Shape matching can be interpreted as a geometric constraint
in PBD [1]. PBD employs an iterative mass-weighted projec-
tion of constraints in a Gauss–Seidel solver. However, the stiff-
ness is highly dependent on the time step size and the iteration
count, which is also problematic in shape matching approaches.
Nevertheless, PBD is popular for the real-time simulation of
deformable models because of its simplicity and robustness. It
has been extended to the simulation of fluids [12], rigid bod-
ies [13], elastic rods [14, 15], and volumetric materials [16], as
well as all of them in a unified manner [17]. A comprehensive
survey of PBD methods was provided in [18]. Recently, PBD

was extended to address the stiffness independently of the time
step size and the iteration count based on a compliant constraint
formulation [19]. However, the extended PBD still employs
Gauss–Seidel iterations, and thus its convergence is slower than
that of projective dynamics [4, 20] where the global solver ben-
efits from the pre-factored system matrix. Moreover, its appli-
cation to oriented particles has not been addressed previously.

Recently, a number of fast and parallel techniques have
been proposed by formulating implicit Euler integration as en-
ergy minimization [21, 22] and by employing an alternating
local/global optimization solver. Liu et al. [20] proposed a
local/global solver for mass-spring systems, where the local
solver deals with nonlinear terms for direction and the global
solver handles stretching. This idea was generalized to other
constraints in projective dynamics [4]. A Chebyshev semi-
iterative approach was also proposed, which combines the re-
sults obtained from previous iterations to achieve better con-
vergence in projective dynamics and PBD [23]. Narain et
al. [24] employed the alternating direction method of multi-
pliers (ADMM) for implicit time integration and showed that
projective dynamics is a special case of ADMM. Their method
also allows nonlinear constitutive models and hard constraints.
In addition, Liu et al. [25] interpreted projective dynamics as
quasi-Newton optimization and applied the L-BFGS method
to accelerate convergence. In these techniques, the stiffness is
largely independent of the iteration count and the solution be-
comes more accurate as the number of iterations increases. Our
method is also based on implicit Euler integration formulated
as energy minimization, and thus it differs from the original ori-
ented particles approach where the stiffness is highly dependent
on the time step size and the iteration count.

In as-rigid-as-possible (ARAP) surface modeling [26], a
block coordinate descent method is employed to iteratively
minimize the shape deformation energy in alternating lo-
cal/global optimization steps. This method introduces a local
rotation at each vertex to define an ARAP deformation energy
by using the squared distances between the locally rotated po-
sitions of its neighbors and the actual deformed positions. The
auxiliary rotations and the positions of the vertices should be
optimized. An optimal rotation at a vertex is computed in par-
allel with shape matching of its neighboring vertices, which re-
quires the polar decomposition of a shape matching matrix. The
optimal positions are computed efficiently by solving a linear
system, which depends only on the initial mesh, so it can be
pre-factored with a sparse Cholesky decomposition.

Embedded deformation for shape manipulation [27] intro-
duces a deformation graph of nodes corresponding to rigid
transformations that deform nearby space, and then defines an
ARAP deformation energy over the deformation graph. In con-
trast to ARAP surface modeling, this approach can deal with
a wide range of shape representations, such as meshes, poly-
gon soups, mesh animations, and animated particle systems.
However, the node has no volume, and thus it cannot deal with
the deformation of a one-dimensional structure robustly, un-
like the oriented particles approach and our proposed method.
In addition, the iterative Newton–Gauss method employed for
nonlinear optimization requires more time than the iterative lo-
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cal/global optimization method when only seeking a plausible
solution in a small number of iterations.

3. Method

In this paper, we introduce a deformation graph G compris-
ing oriented particles, which approximate a flexible body and
deform nearby spaces robustly even with a small number of
particles. The positions and orientations of the oriented par-
ticles are computed stably by solving an energy minimization
problem formulated as implicit Euler integration in a variational
form. The total energy E(G) comprises the momentum poten-
tial energy Ek(G), ARAP deformation energy Ee(G), and direct
manipulation constraint energy Ec(G):

E(G) = Ek(G) + Ee(G) + Ec(G). (1)

We develop an iterative local/global optimization solver to seek
a plausible solution in an efficient and robust manner. The final
deformed vertices are obtained by linear blend skinning of the
rigid transformations stored in the oriented particles, which can
be implemented with GPU skinning.

Our main contribution lies in developing the ARAP defor-
mation energy over a deformation graph comprising oriented
particles. Thus, we first explain the deformation graph and the
corresponding space deformation in Section 3.1, before deriv-
ing the ARAP deformation energy in Section 3.2. We explain
the alternating local/global optimization solver before consider-
ing other energies to make the explanation clearer. The momen-
tum potential energy and direct manipulation constraint energy
are described in Sections 3.3 and 3.4, respectively.

3.1. Deformation graph
Suppose that the j-th ellipsoidal particle E j is transformed

from the rest position x̄ j and orientation Ē j to the current po-
sition x j and orientation E j = [ea

j |e
b
j |e

c
j], where ea

j , eb
j , ec

j are
the current unit axes of E j. We denote the set of particles di-
rectly connected to E j using N j. To compute the deformations
efficiently from a deformation graph, we employ linear blend
skinning, as described by Sumner et al. [27]. The influences
of individual oriented particles are blended smoothly so the de-
formed position vi of each visual vertex v̄i becomes a weighted
sum of its positions after applying rigid transformations of the
k-nearest oriented particles:

vi =
∑
j∈Ki

w j(v̄i)
[
R j(v̄i − x̄ j) + x j

]
, (2)

where R j = E jĒT
j is the rotation of the oriented particle E j and

Ki denotes the k-nearest particles of v̄i. The normal vector can
also be obtained similarly, i.e., ni =

∑
j∈Ki

w j(v̄i)[R jn̄i], but it
requires renormalization.

3.2. ARAP deformation energy
To measure the rigidity of deformation, we employ the

ARAP deformation energy introduced in [26, 27]. The defor-
mation energy of the whole body is the sum of the local rigidity
energy defined at each node Ei assuming that its neighbors E j

are under the local rigid transformation of Ei. It measures the
squared distances between the positions of E j under the local
rigid transformation and the actual deformed positions. The
node considered in this paper is an ellipsoid that differs from
the single vertex described in [26, 27]. Hence, the ARAP de-
formation energy of a deformation graph G is defined using in-
tegration over the ellipsoids as follows:

Ee(G) =
k
2

∑
i

∑
j∈Ni

∫
E j

∥∥∥∥Ri(x̄ − x̄i) − (x − xi)
∥∥∥∥2

dx, (3)

where k is the stiffness constant and x̄ is the undeformed po-
sition of a material point x in the ellipsoid E j. We note that
x̄ is also a function of the integration variable x. Minimizing
the ARAP deformation energy is analogous to enforcing the
shape matching constraint for the local rigidity. Our method is
not intended for physically correct simulations, but instead it is
a practical approach for obtaining visually plausible real-time
deformations.

The deformation energy Ee(G) needs to be represented in a
compact form for minimization. Thus, we first integrate the
term Ei j analytically:

Ei j =

∫
E j

∥∥∥∥Ri(x̄ − x̄i) − (x − xi)
∥∥∥∥2

dx.

Expanding Ei j with the definition of the vector norm gives

Ei j =

∫
E j

(x̄ − x̄i)T(x̄ − x̄i)dx − 2
∫
E j

(x̄ − x̄i)TRT
i (x − xi)dx

+

∫
E j

(x − xi)T(x − xi)dx.

We employ the following integral properties of an ellipsoid:∫
E j

xdx = v jx j,
∫
E j

xTxdx = tr(
√

AT
j

√
A j) + v jxT

j x j and∫
E j

x̄TRT
i xdx = tr(

√
AT

j ET
j RiĒ j

√
A j) + v jx̄T

j RT
i x j, where A j =

1
5 v jdiag(a2

j , b
2
j , c

2
j ) is the moment matrix of the axis-aligned el-

lipsoid with the volume v j = 4
3πa jb jc j and the principal radii

a j, b j and c j. Then, Ei j can be written as follows:

Ei j = tr(
√

AT
j

√
A j) + v j(x̄ j − x̄i)T(x̄ j − x̄i)

− 2tr(
√

AT
j ĒT

j RT
i E j
√

A j) − 2v j(x̄ j − x̄i)TRT
i (x j − xi)

+ tr(
√

AT
j

√
A j) + v j(x j − xi)T(x j − xi).

Factoring the matrix trace terms and dot product terms gives

Ei j = tr(
[
RiĒ j

√
A j − E j

√
A j

]T[RiĒ j
√

A j − E j
√

A j
]
)

+ v j

∥∥∥Ri(x̄ j − x̄i) − (x j − xi)
∥∥∥2
.

Now, we exploit a property of the Frobenius norm tr(MTM) =

‖M‖2F to obtain Ei j of the form:

Ei j =
∥∥∥RiĒ jA

1
2
j − E jA

1
2
j

∥∥∥2
F + v j

∥∥∥Ri(x̄ j − x̄i) − (x j − xi)
∥∥∥2
.

Finally, the analytic integration of Eq. (3) yields a discrete ver-
sion of the ARAP deformation energy:

Ee(G) =
k
2

∑
i

∑
j∈Ni

(
‖Ri(Ē jA

1
2
j ) − R j(Ē jA

1
2
j )‖2F (4)

+ v j‖Ri(x̄ j − x̄i) − (x j − xi)‖2
)
,
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where ‖ · ‖F denotes the Frobenius norm.
To find the optimal solution that minimizes the energy given

in Eq. (4), we employ an alternating local/global optimization
approach in a similar manner to that described by Sorkine and
Alexa [26]. In the local step, the optimal rotations of the par-
ticles are computed independently under the assumption that
their positions are fixed. In the global step, the positions are
computed simultaneously by solving a linear system under the
assumption that the rotations are fixed. The local/global steps
are performed repeatedly for a user-specified number of times.

Optimal rotation. To compute the optimal rotation Ri of the
oriented particle Ei, we first assume that all the positions are
fixed in Eq. (4). Under this assumption, Ri becomes indepen-
dent of R j in [26]. However, Ri is related to R j in Eq. (4), and
thus we need an additional assumption that other R j’s are fixed
when computing Ri. Therefore, there are two options for updat-
ing Ri: a Jacobi style update and a Gauss–Seidel style update,
were the Jacobi style allows parallel updates and the Gauss–
Seidel style generally obtains better convergence. We use a
small number of particles so parallel updates are not greatly
advantageous. Parallelism in the deformable body level gives
better performance than that in the particle level. Hence, we
use the Gauss–Seidel style for updating Ri.

According to [28], the optimal rotation R that minimizes∑
v j‖Rū j − u j‖

2 can be obtained from the polar decomposi-
tion of the covariance matrix C =

∑
v ju jūT

j . The polar de-
composition can be computed robustly by using the singular
value decomposition C = UΣVT, i.e., C = (UVT)(VΣVT) =

RS. In addition, we need a method to obtain the optimal ro-
tation R that minimizes

∑
‖RM̄ j − M j‖

2
F , which can be de-

rived by employing the definition of the Frobenius norm. Sup-
pose that M̄ =

[
m̄1|m̄2|m̄3

]
and M =

[
m1|m2|m3

]
. Then,

‖RM̄−M‖2F = ‖R
[
m̄1|m̄2|m̄3

]
−
[
m1|m2|m3

]
‖2F =

∑
‖Rm̄i−mi‖

2.
Thus, the optimal rotation R that minimizes ‖RM̄ −M‖2F can
be obtained from the polar decomposition of the covariance
matrix C =

∑
mim̄T

i , which can be further written as C =[
m1|m2|m3

][
m̄1|m̄2|m̄3

]T
= MM̄T. Therefore, the optimal ro-

tation R that minimizes
∑
‖RM̄ j −M j‖

2
F can be obtained from

the polar decomposition of C =
∑

M jM̄T
j .

Then, the optimal rotation Ri that minimizes the energy given
in Eq. (4) can be obtained from the polar decomposition of the
following matrix:

Ce
i = k

∑
j∈Ni

[
R j

(
Ā j + Āi

)
+ v j

(
x j − xi

)(
x̄ j − x̄i

)T
]
, (5)

where Ā j = Ē jA jĒT
j is the moment matrix of the ellipsoid E j

oriented with Ē j. The orientation of the ellipsoid Ei is updated
with this optimal rotation: Ei = RiĒi.

Optimal position. To compute the optimal positions from the
given rotations, we compute the gradient of Ee(G) with respect
to the positions xi’s and set them to zero: we seek the solution
of ∂Ee(G)/∂xi = 0. By differentiating Eq. (4) with respect to xi,

we can obtain a set of partial derivatives:

∂Ee(G)
∂xi

= k
∑
j∈Ni

[
(v j + vi)(xi − x j) (6)

− (v jRi + viR j)(x̄i − x̄ j)
]
.

If we let ∂Ee(G)/∂xi = 0, we obtain a sparse linear system
comprising the following equations:

k
∑
j∈Ni

(v j + vi)(xi − x j) = k
∑
j∈Ni

(
v jRi + viR j

)
(x̄i − x̄ j). (7)

By introducing a 3n-dimensional vector x comprising xi, Eq. (7)
can be further written compactly as

Lx = b, (8)

where L is a 3n × 3n sparse symmetric matrix and b is a 3n-
dimensional vector. After including the momentum potential
energy or the direct manipulation constraint energy, the system
matrix L becomes a sparse symmetric positive-definite matrix.
In addition, L depends only on the rest state. Hence, the linear
system can be solved efficiently using a precomputed sparse
Cholesky factorization of L.

3.3. Momentum potential energy
Motivated by projective dynamics, we employ a variational

formulation for elastodynamic deformation. In particular, we
apply the momentum potential energy employed in [4, 20] to
every material point of the ellipsoidal particles. Then, the mo-
mentum potential energy of a deformation graph is defined as
follows:

Ek(G) =
1

2h2

∑
i

∫
Ei

ρ
∥∥∥x − 2xc + xp

∥∥∥2
dx, (9)

where ρ is the density of the particle, and xc and xp are the cur-
rent and previous positions of the material point, respectively.
We note that xc and xp are also functions of x.

Eq. (9) can be analytically integrated in the same manner as
the elastic potential energy by using the integral properties of
an ellipsoid described in Section 3.2, which yields a discrete
version of the momentum potential energy:

Ek(G) =
1

2h2

∑
i

(∥∥∥[Ri − 2Rc
i + Rp

i
]
ĒiA

1
2
i

∥∥∥2
F (10)

+ mi

∥∥∥xi − 2xc
i + xp

i )
∥∥∥2)
,

where mi = ρvi is the mass of the particle Ei, and Rc
i , Rp

i , xc
i and

xp
i are its current and previous rotations and positions, respec-

tively. Note that the rotational terms finally appear explicitly in
the discrete version.

Optimal rotation. In a similar manner to deriving Eq. (5) from
Eq. (4), the optimal rotation Ri that minimizes the energy given
in Eq. (10) can be obtained from the polar decomposition of the
following matrix:

Ck
i =

1
h2

(
2Rc

i − Rp
i

)
Āi. (11)

Hence, Ri that minimizes Ek(G) + Ee(G) can be obtained from
the polar decomposition of Ck

i + Ce
i .
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Table 1. Model statistics and performance data.
Deform. Graph Surface Solver Computation time per frame∗ (ms) FPS

Example Fig. Nodes Edges Vertices Faces ns ni Local Global Collsn. Total Maya App.
Bar manipulation 1 20 19 674 672 1 10 0.27 0.07 · 0.34 60.0 ·

Bar stiffness 2 20 19 674 672 1 10 0.27 0.07 · 0.34 60.0 ·

Dinosaur inverted 4 100 261 4,334 8,664 1 10 0.70 0.24 · 0.94 60.0 ·

Dinosaur falling 5 100 261 4,334 8,664 3 3 0.74 0.24 0.16 1.15 60.0 ·

Sheet 6 256 480 400 1440 1 10 1.63 0.58 0.09 2.32 60.0 ·

Bunny and sheet 6 496 1,647 3,251 5,344 6 2 5.60 2.15 4.71 12.48 36.5 ·

52 models (4 CPU cores) 7 4,120 18,574 175K 350K 6 2 7.86 2.91 15.46 26.24 · 36.32
180 models (4 CPU cores) 7 4,404 18,640 704K 1,406K 6 2 8.87 3.28 14.97 27.14 · 30.13
ns and ni are the numbers of sub-steps and iterations, respectively. ∗The per iteration time can be obtained by dividing by (ns × ni).

Optimal position. In addition, the partial derivatives required
for the optimal positions can be computed as follows:

∂Ek(G)
∂xi

=
mi

h2

(
xi − 2xc

i + xp
i

)
. (12)

Then, the linear system given in Eq. (7) needs to be rewritten
after adding each side of Eqs. (6) and (12). Consequently, the
system matrix L becomes positive-definite.

3.4. Constraints

Position constraint. We support direct manipulation of the de-
formable body through a position constraint, which transforms
the oriented particles so a visual vertex v̄c at the rest state is lo-
cated at vc. Thus, we define an energy to measure the squared
distance between the position obtained using the linear blend
skinning of v̄c and the user-specified position vc, as follows:

Ec
p(G) =

wc
p

2

∥∥∥∥ ∑
j∈Kc

w j(v̄c)
[
R j(v̄c − x̄ j) + x j

]
− vc

∥∥∥∥2
, (13)

where wc
p is a weight for the total energy E(G) and Kc denotes

the k-nearest particles of v̄c.
The positional constraint energy defined above affects the

i-th oriented particles directly for i ∈ Kc. In order to con-
sider this positional constraint during the computation of Ri,
we rewrite Ec

p(G) from the perspective of Ri in the form:
Ec

p(G) = 1
2 wc

p‖Riūi − ui‖
2, where ūi = wi(v̄c − x̄i) and ui =

vc −
∑

j,i w jR j(v̄c − x̄ j) −
∑

w jx j. Then, the covariance matrix
Cp

i = wc
puiūT

i needs to be incorporated in the polar decomposi-
tion for Ri. Consequently, Ri should be obtained from the polar
decomposition of (Ck

i + Ce
i + Cp

i ) when i ∈ Kc.
Similarly, we need to address the additional partial deriva-

tives of Ec
p(G) with respect to xi when computing xi for i ∈ Kc:

∂Ec
p(G)

∂xi
= wc

pwi

( ∑
j∈Kc

w j(v̄c)[R j(v̄c − x̄ j) + x j] − vc

)
. (14)

Thus, the linear system given in Eq. (7) needs to be rewritten
after adding each side of Eqs. (6) and (12) for all i, and (14) for
i ∈ Kc.

Direction constraint. We also support direct manipulation
through a direction constraint, which transforms the oriented
particles so a unit vector n̄c on a visual vertex is aligned with
nc. We define an energy for the direction constraint as follows:

Ec
d(G) =

wc
d

2

∥∥∥∥∥∥∥
∑

j∈Kc
w j(v̄c)R jn̄c∥∥∥∑

j∈Kc
w j(v̄c)R jn̄c

∥∥∥ − nc

∥∥∥∥∥∥∥
2

, (15)

where wc
d is a weight for the total energy E(G). This energy is

related only to the rotations of the oriented particles. However,
it is difficult to minimize Ec

d(G) directly due to the renormaliza-
tion of the direction vector. To facilitate the optimization, we
treat m = ‖

∑
w jR jn̄c‖ as a constant during the local optimiza-

tion step for Ri, although it is a function of Ri. Then, Ec
d(G)

can be written in the form: Ec
d(G) = 1

2 wc
d‖Rir̄i − ri‖

2, where
r̄i = wi

m n̄c and ri = nc −
∑

j,i
w j

m R jn̄c for i ∈ Kc. Consequently,
the covariance matrix Cd

i = wc
drir̄T

i should be incorporated in
the polar decomposition for Ri, i.e., Ri can be obtained from
the polar decomposition of (Ck

i + Ce
i + Cd

i ) when i ∈ Kc.

4. Experimental results

The proposed method was implemented as an Autodesk
MAYA plug-in for contents creation and offline rendering. It
was also implemented as an OpenGL application with GLSL
shaders for real-time demonstration. All of the experiments
were performed using a MacBook Pro laptop computer with an
Intel Core I7 2.9 GHz CPU, 16 GB SDRAM, and ATI Radeon
Pro 460 4 GB VRAM. The time step size was fixed to h = 1/30s
but the number of sub-steps depended on the scenario. Three
sub-steps were employed for the collision with the floor and
six sub-steps for the collision between deformable models. The
total number of iterations for the local/global solver in a sin-
gle time step was maintained at 10. The model statistics and
performance data are summarized in Table 1. The results are
demonstrated in the accompanying video.

The first experiment aimed to demonstrate that the pro-
posed method can simulate one-dimensional models robustly
even with a small number of particles connected serially.
Fig. 1 shows an elastic bar twisted and manipulated with po-
sition/direction constraints. The right inset illustrates the un-
derlying oriented particles. The deformation graph comprises
20 particles and 19 edges. Nevertheless, the simulation is ro-
bust and the result is interesting. All the vertices on one end of
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Fig. 1. Twisting and manipulating a bar with a serial deformation graph.

2x sti�

Side view

2x sti�

4x sti� 4x sti�

Fig. 2. Bars deformed under gravity with different stiffness values. The
green and blue bars are two and four times stiffer than the red.

the bar are fixed with position constraints, and a single vertex at
the center of the other end is manipulated with a single position
constraint and three direction constraints.

The next experiment aimed to verify that the material stiff-
ness is simulated appropriately with different stiffness constants
k. Fig. 2 shows the steady states of three elastic bars deformed
under gravity with different stiffness values. The vertices on
one end of each bar were fixed as in the previous experiment.
The green and blue bars were two and four times stiffer than
the red one, respectively. In contrast to the original oriented
particles approach [3], the material stiffness is largely indepen-
dent of the iteration count, as shown in Fig. 3. We note that
the original oriented particles approach requires a large itera-
tion count to simulate a moderately stiff bar represented with
serially connected particles. In addition, as demonstrated in the
accompanying video, as the time step size becomes smaller, the
simulation becomes more responsive in our method. Neverthe-
less, the stiffness is largely independent of the time step size.

Our method computes the positions and orientations of the
particles directly via energy minimization, and thus it is ex-
tremely stable even in the situation depicted in Fig. 4. At the

 Our method Shape matching with OPs

 Iterations

 100

1,000

10,000

 Iterations

10

100

1,000

Fig. 3. The material stiffness is largely independent of the iteration count in
our method (left) in contrast to shape matching [3] with oriented particles
(right). The iteration counts are 10, 100, and 1000 for the left inset, and
100, 1000, and 10,000 for the right inset.

Frame 1 Frame 2 Frame 4 Frame 8 Frame 16Frame 0

Fig. 4. A dinosaur returns to its rest pose from an extremely deformed pose.

Fig. 5. A dinosaur falling down on the floor.

beginning of the simulation, all the particles were placed so
they coincided with the center particle. We fixed the position
and orientation of the center particle during the simulation. The
dinosaur returned to its rest pose rapidly from an extremely de-
formed pose. When extreme deformation is involved, we need
to take a special care during the polar decomposition of the lo-
cal optimization step. The set of particles connected directly
to a particle can be inverted so the determinant of the covari-
ance matrix given in Eq. (5) may be negative, as in the case
for the deformation gradient in the inverted finite element [29].
Shape matching [28] using the singular value decomposition
employed in our method deals with this problem robustly by
rectifying a negative eigenvalue.

In the next experiment, we let the dinosaur fall down on
the floor, as shown in Fig. 5. Collisions between the ellip-
soidal particles and the floor were detected as described by
Müller and Chentanez [3]. The ellipsoids interpenetrating the
floor were handled by pushing them back so they touched the
floor. Collisions could be missed by discrete collision detec-
tion when the particles moved fast. Thus, we divided each time
step into three sub-steps and we handled the collisions and fric-
tions at the end of each sub-step. Friction was handled simply
by changing the velocities of the colliding particles. The linear
velocity vc

i = (xc
i − xp

i )/h of the i-th particle can be employed
as a state variable for the position with xc

i , so (2xc
i − xp

i ) be-
comes (xc

i + hvc
i ) in Eqs. (10) and (12). In a similar manner,

Ṙc
i = ωc

i × Rc
i = (Rc

i − Rp
i )/h and Rc

i can be employed for rota-
tion, so (2Rc

i − Rp
i ) becomes (Rc

i + hṘc
i ) in Eqs. (10) and (11).

Our method can simulate two-dimensional models, as shown
in Fig. 6, where in the left inset, two position constraints are
used to attach a deformable sheet to a rigid rod. The motion
of the rod was scripted and the sheet was simulated accord-
ingly in order to produce dynamic deformation. In the right
inset, a bunny falls down on a sheet, where the four corners of
the sheet are constrained with position constraints. The bunny
and sheet are both deformable. Hence, collision handling was
required among the ellipsoidal particles. We employed broad-
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Fig. 6. Two-dimensional structures. A deformable sheet is attached to a
rotating rod (left) and a deformable bunny falls down on a deformable
sheet (right).

phase culling based on spatial hashing [30], and the efficient
narrow-phase collision detection and response method [3]. A
pair of colliding ellipsoids was resolved by separating them out-
ward in the inter-center direction.

For real-time simulation and rendering of many deformable
bodies, we exploited a multi-core CPU and many-core GPU.
Fig. 7 shows a screenshot of an OpenGL application devel-
oped with GLSL shaders. The simulation was performed with
a simple parallelization using OpenMP and GPU skinning. The
scene in the bottom left inset comprises 52 deformable mod-
els with 4.1 K particles and 18.6 K edges for the deformation
graphs, and 175 K vertices and 350 K triangles for the visual
surfaces. As the simulation progressed, 40 deformable models
(10 instances each of the dinosaur, bunny, armadillo, and torus)
fell down on the floor fenced by 12 deformable columns. The
simulation ran at over 30 FPS with six sub-steps for collision
detection and response. The number of sub-steps was large in
this experiment, and thus only two iterations of the local/global
solver were used. On average, local optimization, global opti-
mization, and collision handling required 25, 13, and 62 percent
of the total computational time, respectively.

The final experiment demonstrated the effectiveness of our
technique as an embedded space deformation technique. Thus,
for the example shown in the bottom right inset of Fig. 7, we
employed a smaller number of particles for each deformable
model (illustrated in the top right inset) than the previous exam-
ple in order to simulate a larger number of deformable models.
In this example, each dinosaur, bunny, and armadillo comprised
30 particles, and each torus comprised 12 particles. In the previ-
ous examples, each model comprised 100 particles. Neverthe-
less, the simulation was robust and responsive. The simulation
ran at over 30 FPS with 180 deformable models comprising 4.4
K particles and 18.6 K edges for the deformation graphs, and
704 K vertices and 1,406 K triangles for the visual surfaces.

5. Conclusion

In this paper, we proposed an ARAP approach for the real-
time simulation of physics-based deformation with oriented
particles. The proposed method can deal with one-, two-,
and three-dimensional deformable models robustly even with
a small number of particles by extending the deformation
graph [27] with oriented particles [3] and by formulating the

corresponding ARAP deformation energy. Our method em-
ploys an implicit Euler integration scheme formulated as an en-
ergy minimization problem [4] where it seeks the optimal po-
sitions and orientations of the particles using an alternating lo-
cal/global optimization solver, which is easy to implement and
computationally efficient. The material stiffness is largely inde-
pendent of the iteration count and the time step size, in contrast
to shape matching with oriented particles [3]. Our experimental
results demonstrate that hundreds of deformable models with an
extremely large number of polygons can be simulated robustly
in real time using thousands of particles.

Minimizing the ARAP deformation energy is analogous to
enforcing the shape matching constraint for the local rigidity.
Our method is not intended for physically correct simulations
but instead it is a practical approach for obtaining visually plau-
sible real-time deformations. Our formulation utilizes integra-
tion over ellipsoids but the ellipsoids are discrete approxima-
tions of a deformable body. Hence, the physical behavior de-
pends on the discretization, which is an inherent limitation of
approaches based on oriented particles. Our formulation also
inherits the slow convergence problem from projective dynam-
ics, although this can be circumvented to a certain extent by
using a Chebyshev semi-iterative approach [23] or a quasi-
Newton method [25]. Another shortcoming is that the global
optimization solver exploits pre-factorization of the system ma-
trix, which must be re-factored to deal with run-time tearing
or fracturing. Fortunately, we developed our formulation by
considering a moderate number of particles. Building and fac-
toring 300 particles requires less than 2 ms. Hence, we plan to
incorporate plasticity and fracturing as described by Choi [31].
Currently, collision detection is the performance bottleneck in
a large scene because we employ a naive parallelization of spa-
tial hashing. We plan to exploit more elaborate parallelizations
in the CPU/GPU. The ARAP deformation energy only supports
isotropic materials, but we aim to consider anisotropic mate-
rials by introducing additional deformation energies in future
research.
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